Database Auditing: Best Practices

Rob Barnes, CISA
Director of Security, Risk and
Compliance Operations
rbarnes@appsecinc.com

Verizon 2009 Data Breach Investigations Report:

285 million records were compromised in 2008

This Session's Agenda

Introduction

- Database Vulnerabilities are the New Front-Lines
- Factors that Drive Requirements for Database Auditing

Attacking Where the Data Resides

- Planning an Attack
- Attacking Database Vulnerabilities

Database Auditing

- Securing Your Databases
- Database Auditing and Forensics
- Best Practices

Recent Breaches

Company/Organization	# of Affected Customers	Date of Initial Disclosure
Heartland Payment Systems	100,000,000	20-Jan-09
Monster.com	Unknown	23-Jan-09
phpBB.com	400,000	5-Feb-09
University of Alabama	37,000	13-Feb-09
CVS Pharmacies	Unknown	18-Feb-09
Arkansas Department of Information Systems	807,000	20-Feb-09
Idaho National Laboratory	59,000	7-Mar-09
US Army	1,600	12-Mar-09
Symantec	200	31-Mar-09
Metro Nashville School/Public Consulting Group	18,000	8-Apr-09
Peninsula Orthopedic Associates	100,000	11-Apr-09
Etc, etc, etc		

Source: Privacy Rights Clearinghouse: http://www.privacyrights.org/ar/ChronDataBreaches.htm

Databases Are Under Attack

- February 2005 to March 2009
- Total Affected Customers: 355,547,925+
 - Literally hundreds of incidents
 - Victims include financial institutions, government agencies, retailers, healthcare providers, universities, manufacturing, consulting and audit firms
- Incidents reported almost every day
 - Already over 100,000,000 records stolen in 2009!

Source: http://www.privacyrights.org/ar/ChronDataBreaches.htm

The Threats to Enterprise Data Continue to Rise

- The database security landscape has changed:
- Attacks are targeting the database where records can be harvested in bulk on a global scale
- Perimeter security measures are necessary but not sufficient

What Do The Numbers Tell Us?

84

Percent of companies that feel database security is adequate

56

Percent of the same companies that experienced a breach in the last 12 months

73

Percent of companies that predict database attacks will increase

To Make Matters Worse - Threats Are Very Real

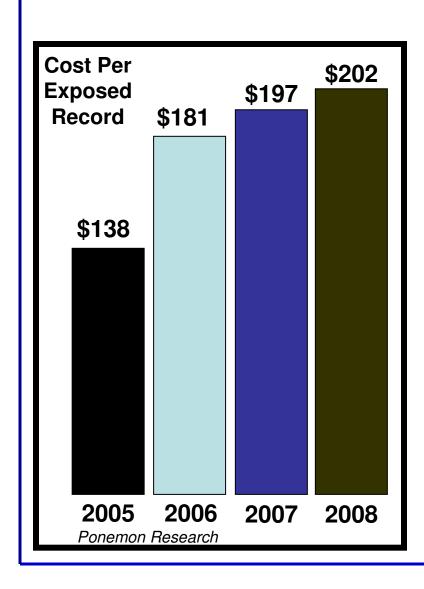
Database Security: Recent Findings

Only 1 out of 4 databases are locked down against attacks.

Databas #1
S+1.ds:
P..protected

Database #2
Status:
Protected

Database #3
Strus:
Protected


Databar #4 Sinus: Improtected

Source: 2008 IOUG Data Security Report, Joe McKendrick, Research Analyst

Data Breach Costs Are Rising

253 million records breached X 202 per record

Equals

\$51.1 billion breach related costs

Costs to the Breached Organization

\$202 per record breached

 2008 average total per-incident costs were \$6.65 million

- More than 84% of cases involved organizations that had more than one data breach in 2008
- 88% of all cases in this year's study involved insider negligence
- - 2009 Annual Cost of a Data Breach Study (Ponemon Institute)

To Make Matters Worse - Threats Are Very Real

Database Security: Recent Findings

- One out of five respondents expects a data breach or incident over the coming year.
- "...few have addressed the key vulnerabilities stemming from exposure of data to internal sources."
- "...only a minority has addressed security to monitor "super users"—such as administrators with heightened access privileges—either onsite or offsite."

Source: 2008 IOUG Data Security Report, Joe McKendrick, Research Analyst

Database Vulnerabilities

Common Database Threats

Database Vulnerabilities:

- Default accounts and passwords
- Easily guessed passwords
- Missing Patches
- Misconfigurations
- Excessive Privileges

External Threats:

- Web application attacks (SQL-injection)
- Insider mistakes
- Weak or non-existent audit controls
- Social engineering

Database Vulnerabilities

	Oracle	Microsoft SQL Server	Sybase	IBM DB2	MySQL
Default & Weak Passwords					
Denial of Services & Buffer Overflows					
Misconfigurations & Privilege Management Issues					

Database Vulnerabilities: Default & Weak Passwords

Databases have their own user accounts and passwords

	Oracle	Microso ft SQL Server	Sybase	IBM DB2	MySQL
Default & Weak Passwords					

Database Vulnerabilities: Default & Weak Passwords

- Oracle Defaults (hundreds of them)
 - User Account: system / Password: manager
 - User Account: sys / Password: change_on_install
 - User Account: dbsnmp / Password: dbsnmp
- Microsoft SQL Server & Sybase Defaults
 - User Account: SA / Password: null
- It is important that you have all of the proper safeguards against password crackers because:
 - Not all databases have Account Lockout
 - Database Login activity is seldom monitored
 - Scripts and Tools for exploiting weak passwords are widely available

Database Vulnerabilities: Missing Patches

Databases have their own DoS's & Buffer Overflows

	Oracle	Microsoft SQL Server	Sybase	IBM DB2	MySQL
Default & Weak Passwords					
Missing Patches					

Database Vulnerabilities: Missing Patches

- Privilege Escalation
 - Become a DBA or equivalent privileged user
- Denial of Service Attacks
 - Result in the database crashing or failing to respond to connect requests or SQL Queries.
- Buffer Overflow Attacks
 - Result in an unauthorized user causing the application to perform an action the application was not intended to perform.
 - Can allow arbitrary commands to be executed no matter how strongly you've set passwords and other authentication features.

Misconfigurations

Misconfigurations can make a database vulnerable

	Oracle	Microsoft SQL Server	Sybase	IBM DB2	MySQL
Default & Weak Passwords					
Denial of Services & Buffer Overflows					
Misconfigurations					

Misconfigurations

Misconfigurations Can Make Databases Vulnerable

Oracle

- External Procedure Service
- Default HTTP Applications
- Privilege to Execute UTL_FILE

Microsoft SQL Server

- Standard SQL Server Authentication Allowed
- Permissions granted on xp_cmdshell

Sybase

Permission granted on xp_cmdshell

IBM DB2

CREATE_NOT_FENCED privilege granted (allows logins to create SPs)

MySQL

Permissions on User Table (mysql.user)

Database Auditing & Forensics

Database Protection Planning: Auditing and Monitoring

1. Access & Authentication Auditing

Who accessed which systems, when, and how

2. User & Administrator Auditing

What activities were performed in the database by both users and administrators

3. Security Activity Monitoring

Identify and flag any suspicious, unusual or abnormal access to sensitive data or critical systems

4. Vulnerability & Threat Auditing

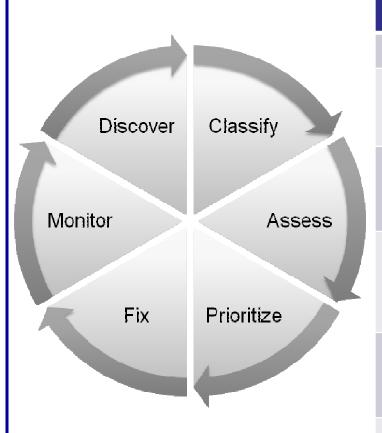
Detect vulnerabilities in the database, then monitor for users attempting to exploit them

5. Change Auditing

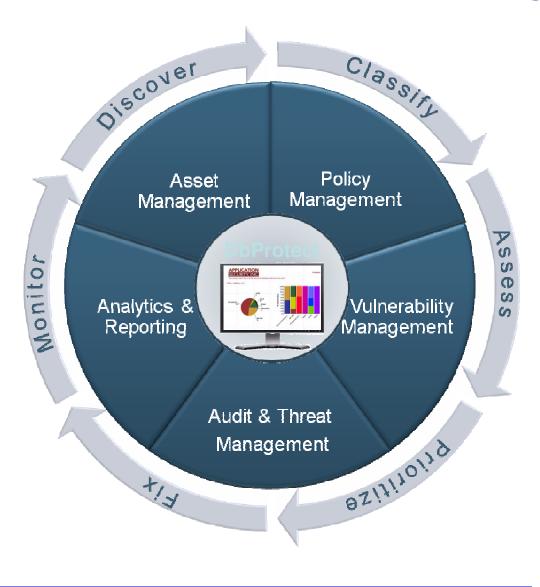
Establish a baseline policy for database; configuration, schema, users, privileges and structure, then track deviations from that baseline

Auditing: Vulnerability Assessment & Activity Monitoring

- "Outside in" and Inside out" scan of all database applications to assess
 - Security strength
 - Database vulnerabilities
 - Application discovery and inventory
- Fix security holes and misconfigurations
- Develop policies based on results from scan to identify:
 - Database vulnerability
 - Roles and responsibilities functionality to segregate users
 - Compliance risk factors
- Auditing
 - Comprehensive reporting
- Real-Time Monitoring
 - Defend against misuse, fraud, and abuse from internal and external users
 - Monitor all user activity and system changes (DDL, DML, DCL)
 - Tune detection parameters to capture events while bypassing false positives



Database Security Best Practices



Data Security Risk and Compliance Life Cycle

Lifecycle Component	Purpose
Discover	Produce a database or asset inventory
Classify	Finds sensitive data to determine business value of systems and associated regulatory requirements
Assess	Scan databases for vulnerabilities, misconfigurations / configuration changes, and user entitlements
Prioritize	Combine info from classify and assess phases to determine what to fix, what to mitigate through compensating controls (monitoring), and in what order to do the work
Fix	Create and run fix scripts, apply patches, create monitoring policies to implement compensating controls
Monitor	Audit privileged access and access to sensitive data. Monitor for exploits and suspicious or unusual behavior

Best Practices Methodology

Database Security Best Practices

Assess Security Posture

- Assess database security risks
- •Determine processes, applications and systems affected
- •Prioritize risk and establish work plan

Address Risk

- Document risks and controls
- Align business and IT goals
- •Develop business case for investment in security

Implement Monitoring

- •Implement the program
- Monitor risks and controls
- •Distribute reports to provide perspective to executive teams
- •Test and remediate
- Audit and attest
- Measure and monitor readiness

Establish Controls

- •Set responsibilities and accountability
- •Establish mechanisms for reporting and assessment
- Apply the principle of least privilege and role based access controls
- •Implement policies and procedures to minimize exposure

How Do You Secure Databases?

- Start with a Secure Configuration
- Stay Patched
 - Stay on top of all the security alerts and bulletins
- Implement the Principal of Least Privilege
 - Review User Rights to ensure all access is appropriate
- Defense in Depth / Multiple Levels of Security
 - Regularly scan your databases for vulnerabilities
 - Fix the problems reported!
 - Implement database activity monitoring...
 - ...and database intrusion detection
 - Especially if you can't stay patched!
 - Encryption of data-in-motion / data-at-rest

Audit Your Database Environment TODAY!

Check for object and system permissions:

 Check views, stored procedures, tables, etc. permissions.

Look for new database installations:

Specifically third party database installations.

Search for users with DBA privileges:

 This helps to detect intrusions, elevation of privileges, etc.

Audit database configuration and settings:

• If security configurations or settings are changed for instance by a system upgrade, patch, etc.

Check database system objects against changes:

 Detecting system changes you haven't applied could mean that a rootkit is present.

HOW TO: Protect Against Attacks

Set a good password policy:

Use strong passwords or passphrases.

Keep up to date with security patches:

- Try to install patches as fast as you can. Database vulnerabilities are serious and sometimes a database server can be easily compromised with just a simple query.
- Always test patches for some time on non-production databases

Protect access to the database server:

 Allow connections only from trusted hosts and block non used ports and outbound connections. Establish exceptions for special instances like replication, linked databases, etc.

Disable all non used functionality:

 Excess functionality can lead to vulnerabilities

Use selective encryption:

- At network level: use SSL, database proprietary protocols.
- At file level for backups, laptops, etc.

HOW TO: Protect Against Attacks

Set a good password policy:

Use strong passwords or passphrases.

Keep up to date with security patches:

- Try to install patches as fast as you can. Database vulnerabilities are serious and sometimes a database server can be easily compromised with just a simple query.
- Always test patches for some time on non-production databases

HOW TO: Protect Against Attacks

Protect access to the database server:

 Allow connections only from trusted hosts and block non used ports and outbound connections. Establish exceptions for special instances like replication, linked databases, etc.

Disable all non used functionality:

Excess functionality can lead to vulnerabilities

Use selective encryption:

- At network level: use SSL, database proprietary protocols.
- At file level for backups, laptops, etc.

HOW TO: Periodically Audit Database Systems

Check for object and system permissions:

 Check views, stored procedures, tables, etc. permissions. Check file, folder, registry, etc. permissions. Changes on permissions could mean a compromise or mis-configuration.

Look for new database installations:

 Third party products can install database servers and new installed servers could be installed with blank or weak passwords, un-patched, mis-configured, etc. Detect new database installations and secure or remove them.

Search for users with DBA privileges:

This helps to detect intrusions, elevation of privileges, etc.

HOW TO: Periodically Audit Database Systems

Audit database configuration and settings:

 If security configurations or settings are changed for instance by a system upgrade, patch, etc. your databases could be open to attack.
 If they change and there wasn't a system upgrade then it could mean a compromise.

Check database system objects against changes:

If you detect a change in a system object and you haven't applied a
fix or upgrade to your database server it could mean that a rootkit is
present.

Advantages of Off-database Auditing

Native database auditing has its disadvantages

- Must be enabled and configured on each system individually
- Separation of controls/ Segregation of Duties?
 - Can be solved with audit management tools (aka Audit Vault)

Native auditing

- Can be disabled or deleted by attacker in the database
- Most databases have NO auditing configured

Advantages of Off-database Auditing

- 3rd-party security tools provide improved auditing
 - Most importantly, they protect and store the audit trail
- Focus attention on critical issues
 - Highlights potentially suspicious activity
 - Differs from volumes of audit logs
 - Operationally efficient
 - Indicates possible need for action
 - Helps eliminate false-positive responses
 - Preserves resources, staff, time and money

Audit & Threat Management Recommendations

- Perform Database Auditing and Intrusion Detection
 - Implement real-time monitoring
- Integrate with native database audit by scanning logs
- Integrate with audit management tools
- Implement real-time alerting (SIEM integration)
- Keep a library of best-practice implementation information

Database Security Info from AppSecInc

- White Papers
 - http://www.appsecinc.com/techdocs/whitepapers/research.shtml
 - SQL Server Forensics
 - Database Activity Monitoring
 - Search Engines Used to Attack Databases
 - Introduction to Database and Application Worms
 - Hunting Flaws in Microsoft SQL Server
- Presentations
 - http://www.appsecinc.com/techdocs/presentations.shtml
 - Protecting Databases
 - Hack-Proofing MySQL, IBM DB2, Oracle9iAS
 - Writing Secure Code in Oracle
 - Addressing the Insider Threat to Database Security
- Security alerts
 - www.appsecinc.com/resources/mailinglist.html

Additional Resources

Database Security Controls – a joint study by Application Security, Inc & Enterprise Strategy Group

https://www.appsecinc.com/news/casts/2009Outlook120908/3702A.shtml

Market Share: Database Management Systems Worldwide, 2007 (Gartner)

www.gartner.com

2009 US Cost of a Data Breach Study

www.encryptionreports.com

2008 Verizon Business Data Breach Investigations Report

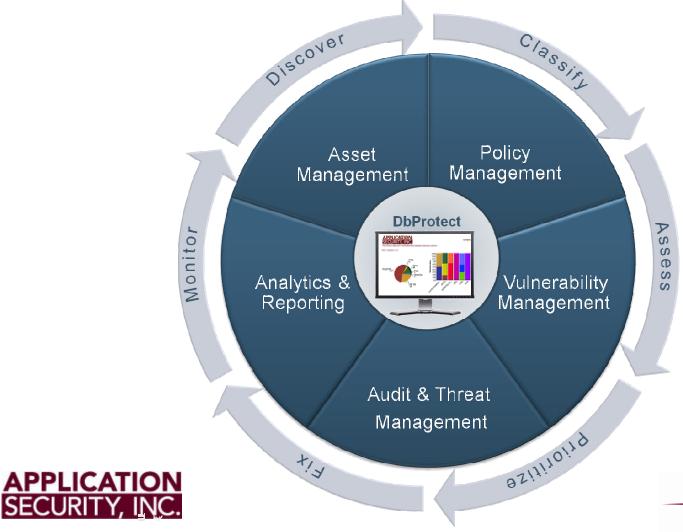
http://securityblog.verizonbusiness.com

Security alerts:

www.appsecinc.com/resources/mailinglist.html

- Vulnerabilities?
- Locking down the database?

Email our security experts at:


asktheexpert@appsecinc.com

blog.appsecinc.com

Database Security Best Practices with DbProtect

