

Endpoint Security

Hidden Threats and a Proposed Solution to the Problem

ISACA Fall Conference Sept 18th, 2007

Who Am I?

- Mark S. Kadrich, CISSP
 - CEO of TSC
 - I have an axe to grind so use appropriate filters
 - 25 years of security experience
 - Practitioner, Customer, Vendor
 - Electrical Engineer (this becomes relevant later)
 - Author <u>Endpoint Security</u>
 - Published by Addison-Wesley
 - ISBN 0-321-43695-4
 - Calls, complaints, compliments
 - markkadrich@thesecurityconsortium.net
 - 408-313-6263

Agenda

- Problem Statement
- Some History
- Differences?
- Conclusions
- Present State of EPS
- Signs of Good EPS

Agenda

- Bad News
- A Proposed Solution
- Closed Loop Process Control Defined
- Endpoints Discussed
- Some Vendors
- Some Questions for Vendors

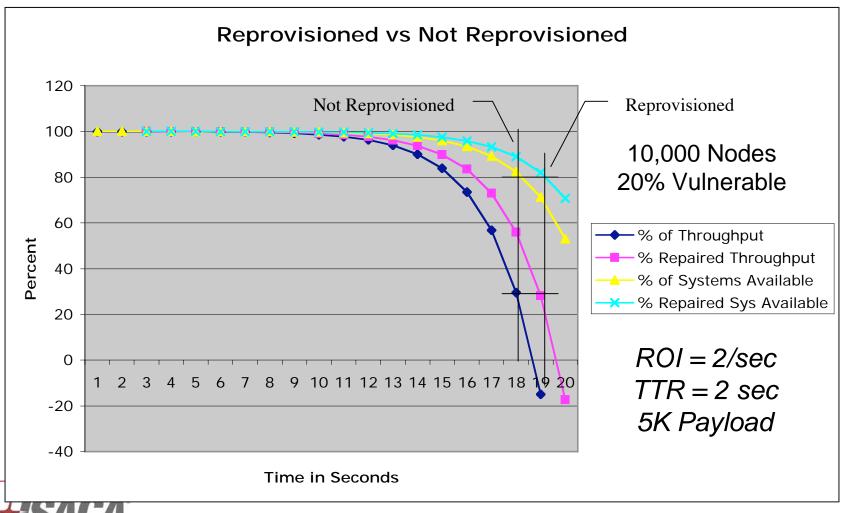
Our Talk....

There are systems on your network that you don't control. When did the vending machines become a vector for a network attack? Why can't I trust my printer? Besides the standard Windows, Mac, and Linux systems, I will discuss the security issues of various types of systems ranging from handhelds to embedded control systems. Virtually everything is getting a network connect these days and sometimes, many times, that's a bad thing. We will discuss what type of controls are available and how a process control model can be used to ensure system trust - and how some systems just can't be trusted. I will discuss how the endpoint and the network must work together to ensure compliance and security because by themselves they are not capable of making an accurate determination.

Problem Statement

- Controlled network growth difficult
 - Wireless helping here!
- Regulatory environment hostile
 - Lots of regulations
 - Lots of different interpretations
- Business processes drive architecture
 - (except for Microsoft)

Problem Statement (more)


- Attacks are automated
 - Botnets are centrally managed
 - Smart malware tests multiple vectors
- Rootkits have "how to" books
 - You don't have to be smart
 - Population of attackers increases
- Things happen really fast

Dead Man's Curve

San Francisco Chapter

Audit 101

- Must have a policy to audit against
- Process must produce repeatable results
- Secure endpoints are:
 - Managed
 - Auditable
 - Trustworthy

Some History

- <fud>
- Feds say things are getting better!
 - Never hear that in the media!
 - FBI/CSI report
- Anecdotal evidence says otherwise
- High profile failures
- Scary \$\$ Numbers
- </fud>

Why the Difference?

- Regulatory pressure
 - Changes reporting pressure
 - Must report some things now
- Reporting requirements makes more things public
 - More things reported means that more action can be taken
 - More actions means improvement!
- Fiduciary responsibility
 - Forces legal group to manage survey responses
 - CSI/FBI had fewer details on financial loss

Conclusions

- Security continues to fail
 - That's why we have numbers
 - That's why they measure losses
- So...
 - Original hypothesis is incorrect?
 - Method for gathering information is incorrect?

How about both?

- Independent products for:
 - Firewall
 - Antivirus
 - Antispyware
 - Software updates
 - Vulnerability management
 - Intrusion detection
 - Intrusion prevention
 - User provisioning
 - Policy management
 - Authentication
 - Authorization

- That's Okay, it's only 11 or so consoles to manage
 - Piece of cake, right?
- For the most part
 - None of them talk to each other
 - Configurations must be independently managed
- Vendors continue to
 - Generate new products
 - Provide no proof that they have secure products

- Vendors worried about vulnerabilities
 - Eliminate all vulnerabilities and you're secure!
 - Most VM solutions are Windows only
- Market Driven
 - Legislation (and thus audit) du jure
 - Lot's of templates
 - They're easy
 - Allow for OS hook
- Lots of Places that Leak
 - Printers
 - Embedded systems (More later)

- Risk Management
 - Systems measured by state of patches
 - Also measured by vulnerability profile
 - What apps are running
 - Exchange, IIS, Apache are all vulnerabilities with some nice features
- Instead of Risk, use Trust
 - Does system represent risk? (tough question)
 - But do you trust it enough to allow access?
 - This is really the question you're asking!

Signs of Good EPS

- Centralized management
 - Good build, release, test, and update process
 - All systems comply with process
 - A way to track this exists
- Good policy
 - Covers all contingencies (like a good contract)
 - Doesn't have to be worked around
- Trust based architecture
 - Decisions made regarding compliance
 - Do I trust this system enough to be on my network?

More Signs of good EPS

- Basic blocking and tackling
 - Antivirus
 - HIDS
 - Host based firewalls
 - Anti-spyware
 - Anti-spam
 - User training
- Network Security Too!
 - Firewalls
 - NIDS/NIPS
 - NAC

The Bad News

- Worse thing about the present state of EPS
 - It only focuses on things that you see or make the news
 - Desktops
 - Notebooks
 - Servers
 - Handhelds
- Hidden things still out there
 - Embedded systems
 - Access Points
 - Printers (where are all your printers?)

What Can Be Done?

- Need a better answer
 - Acknowledge lack of integrated engineering
 - Driven by marketing
 - Treading water
 - Integrate network and endpoints
 - Both have strengths and weaknesses
 - Overlap can be used to our advantage
- Identify the applicable processes
 - Many processes (human and technological)
 - Many disciplines (business and engineering)
 - Must be identified and accounted for

A Different Approach

What is CLPC?

- Closed Loop Process Control
- A method of applying feedback such that a system (or process) becomes self regulating

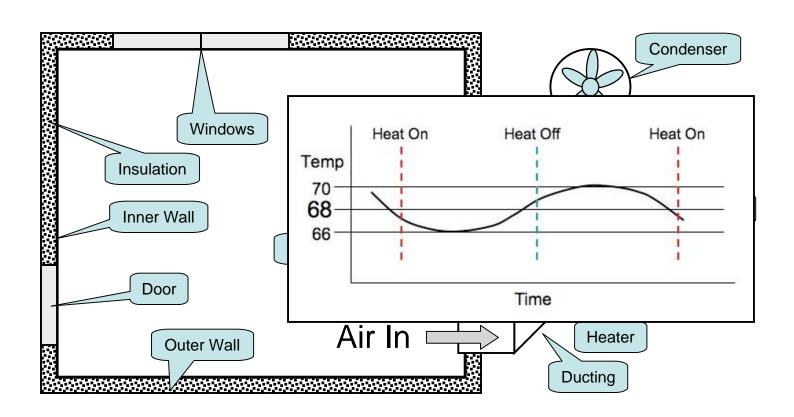
Why CLPC?

- Needed to describe the science
- Things happen too fast for humans to deal with
- Things happen too slow for our unconnected technology to address

Why CLPC applied to Networks

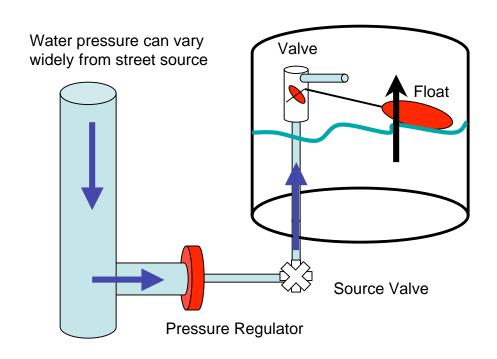
- I was curious about our failures and our successes
- Analyzed security technology from the perspective of a process control engineer.

How Does CLPC Work?



- Manages to a Set Point
 - Like the temperature in the house
 - In our case, a level of trust (compliance)
- Uses a proportional control as the foundation
 - Basic function that coarsely maintains setpoint
 - We'll need to combine some things to make this work
- Uses Integral and Derivative controls to "home in" on set point
 - Integration sums errors (ex: failed logins)
 - Derivative monitors rate of change (ex: attack rate)
- All network devices must play

CLPC Example



CLPC Example

- Success
 Criteria well understood
- 2. Failure modes are well understood
- 3. Operates to same level every time
- 4. Self regulating

Analysis

- Devices categorized by their ability to address proportional, derivative or integral control modes
- Some controls are "bang-bang"
 - Bimodal controls are either on or off
 - Function like thermostat
- There was not one proportional control!
 - Nothing that controlled the introduction of risk into the network!
 - All endpoints treated with the same level of trust
 - Authorizations done strictly at user level

Analysis Results

Toilets have a better proportional control than our networks do.

What's Missing?

A Basic proportional control that we can hang the rest of our control solutions upon.

How Does CLPC Work For Us?

- Setpoint is Minimum Compliance Level for network you want access to
- Uses the network and the endpoint
 - Trust client on endpoint measures compliance, gathers authentication information
 - Trust client talks with NAC enabled architecture to control access to network
 - Although user may be trusted, untrusted systems aren't given a chance to attack network

CLPC Isn't Just for Endpoints

- Governs all processes, for example
 - Device provisioning
 - Incident Response
- Some feedback, feed forward, and feed through paths are human based
 - Very low frequency
 - Very unreliable
 - Must be identified within the model

Endpoints Defined

- Windows
- Linux
- Mac
- Handhelds
 - PDAs and Phones
 - iPods (yep!)
- Embedded Systems
 - Printers
 - Vending machines
 - Control systems (PLCs)
 - Ipods (here too!)
 - VolP handsets

Systems We Know

- Windows
 - Lots of security software for them
 - CLPC capable
 - Trust client available
- Require RFC-3580 compliant Devices
 - VLAN assignment capable
 - Can be broken
- Or, DHCP based solution
 - Not very strong

Systems We Know

Mac

- Enterprise manageable
- Basic security tools available
- CLPC capable (limited)
- Again with the DHCP enforcement

Linux

- Lots of options (open vs commercial)
- Basic security tools available
- Not CLPC capable

More Systems

Embedded devices

- Hidden from view
- Printers and APs
- Medical equipment
- SCADA (PLC controllers)
- Commercial systems (dispensers)
- Transaction systems
- NO UPDATE PROCESSES!

Some Vendors

- Cisco, ConSentry, Elemental, Entarasys, Extreme, ForeScout, InfoExpress, Juniper, Lockdown, McAfee, Microsoft, Mirage, Nevis, StillSecure, Symantec, Vernier
 - However, complex and "feature rich"
 - Difficult to implement today
 - Some (many?) not designed (or tested) by security people
 - Interoperability is not a consideration for most

Questions

- What kind of independent testing have you done?
- What type of SDLC do you employ?
- Do you have a documented process?
- What software security testing tools do you use?
- How do you do flaw analysis?
- How are flaws incorporated back into the product?
- How many security engineers do you have working on the product?
- What industry certifications do your security engineers possess?
- What industry certifications does the product have?

Thanks!

Questions?

Send them to:

markkadrich@thesecurityconsortium.net

Or call: 408-313-6263

